Atom-by-atom nucleation and growth of graphene nanopores.
نویسندگان
چکیده
Graphene is an ideal thin membrane substrate for creating molecule-scale devices. Here we demonstrate a scalable method for creating extremely small structures in graphene with atomic precision. It consists of inducing defect nucleation centers with energetic ions, followed by edge-selective electron recoil sputtering. As a first application, we create graphene nanopores with radii as small as 3 Å, which corresponds to 10 atoms removed. We observe carbon atom removal from the nanopore edge in situ using an aberration-corrected electron microscope, measure the cross-section for the process, and obtain a mean edge atom displacement energy of 14.1 ± 0.1 eV. This approach does not require focused beams and allows scalable production of single nanopores and arrays of monodisperse nanopores for atomic-scale selectively permeable membranes.
منابع مشابه
Substrate Dependent Ad-Atom Migration on Graphene and the Impact on Electron-Beam Sculpting Functional Nanopores
The use of atomically thin graphene for molecular sensing has attracted tremendous attention over the years and, in some instances, could displace the use of classical thin films. For nanopore sensing, graphene must be suspended over an aperture so that a single pore can be formed in the free-standing region. Nanopores are typically drilled using an electron beam (e-beam) which is tightly focus...
متن کاملInyestigafion of H2 Adsorption on Grapheme by DFT Methods
We optimized the geometries of the graphene and graphene with hydrogen using PW91VWN, PWCIPL,MPWLYP, G96LYP, G96141.0-210.6-310, 6-31G*Ievels of theory and compared our results with each other.We present the most important structural parameters determined for the addition of a hydrogen atom tographene and the outward movement of the carbon atom that is bonded to hydrogen is 0.48 A Also wecalcul...
متن کاملEffect of Curvature on the Mechanical Properties of Graphene: A Density Functional Tight-binding Approach
Due to the high cost of experimental analyses, researchers used atomistic modeling methods for predicting the mechanical behavior of the materials in the fields of nanotechnology. In the pre-sent study the Self-Consistent Charge Density Functional Tight-Binding (SCC-DFTB) was used to calculate Young's moduli and average potential energy of the straight and curved graphenes with different curvat...
متن کاملDNA translocation through single-layer boron nitride nanopores.
Ultra-thin nanopores have become promising biological sensors because of their outstanding signal-to-noise ratio and spatial resolution. Here, we show that boron nitride (BN), which is a new two-dimensional (2D) material similar to graphene, could be utilized for making a nanopore with an atomic thickness. Using an all-atom molecular dynamics simulation, we investigated the dynamics of DNA tran...
متن کاملNovel growth mechanism of epitaxial graphene on metals.
Graphene, a hexagonal sheet of sp(2)-bonded carbon atoms, has extraordinary properties which hold immense promise for nanoelectronic applications. Unfortunately, the popular preparation methods of micromechanical cleavage and chemical exfoliation of graphite do not easily scale up for application purposes. Epitaxial graphene provides an attractive alternative, though there are many challenges, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 16 شماره
صفحات -
تاریخ انتشار 2012